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Abstract

We explore the use of a shoe-mounted camera as a sen-
sory system for wearable computing. We demonstrate tools
useful for gait analysis, obstacle detection, and context
recognition. Using only visual information, we detect pe-
riods of stability and motion during walking. In the stable
phase, the foot can be assumed to be parallel to the ground
plane. In this condition, the floor dominates the lower part
of the camera's view, and we show that it can be segmented
out from the remainder of the scene, leaving walls and ob-
stacles. We also demonstrate floor surface recognition for
context awareness.

Figure 1. The system. A camera and inertial

1. Introduction sensor are mounted on a sandal.

Costs for digital cameras and computation continue to be
driven lower by technological advances and strong demand. Inaths papres analzeth weaes gait a n t
Future wearable computing system can benefit from these frames corresponding with moments of stability when thetren s b appyin ca erasto ew, orespeialiedand foot is pressed against the floor. During these moments, the
trendsfloor dominates the lower part of the camera's view, and weless traditional sensing tasks. In this paper, we explore the show that the floor can be segmented out from the remainder
use of a shoe-mounted camera for gait analysis, obstacledetection, and context recognition, of the scene, leaving walls and obstacles. Next, we demon-

Wetearableand compuxtingognishoe bn. ustrate floor surface recognition for context awareness. WeW earable com puting on shoes has been used for a variety c n l d y s e u ai g a o tt e r l o t m u t d c m
of purposes, including user interfaces [4], power production conclude by speculating about the role a foot-mounted cam-
[71, and gambling [8]. We show that visual processing can
also benefit from this prime location. The planted foot is the
only part of the body that is reliably stationary with respect 2. The platform
to the world during walking and standing. When we walk,
our feet come into contact with the ground in an alternat-
ing pattern. Each foot swings swiftly through the air, then Our system consists of a camera and three inertial sen-
is pressed against the ground as the weight of the body is sors. The camera is mounted at the very front of a sandal astransferred onto it [5]. During these key moments within a shown in Figure 1. It is rigidly attached to an inertial sensor.
person's stride, the planted foot tends to be in a canonical The remaining two inertial sensors are attached to the leg asorientation with respect to the floor and relatively motion- shown - however they do not play a role in the componentoess, which leads to simplified vision processing. of this project described here. Data is logged on a laptopless, wcarried in a backpack. The system was tested on two floors

'authors ordered alphabetically of a building, on eight different surfaces (see Figure 6).
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Figure 2. This figure shows a sequence of frames taken during a single step. In that step, the wearer
moves from a lobby area into a corridor, and from a blue to red carpet. The main swing phase of the
step occurs in frames five to nine.

3. Gait analysis 01 1
0.-0.1

When the foot is pressed against the ground, the cam-
era is in a fixed orientation with respect to the ground L
plane, and so this is an ideal opportunity for visual pro- 0
cessing. Figure 2 shows images recorded during a single 40-r ............. ..

step. In the initial part of the swing phase, the floor in these -,0

frames becomes blurred (low spatial derivative AIX), the 2

view changes rapidly (high temporal derivative AIr), and
the foot turns downwards towards the floor (low average lu-

minance 10 ). Each of these cues could be used individually
to identify the swing phase of walking. We combine them A
for robustness into a single measure s.

1 01 10 2030

Io = I(x,y), N = 1 (1)
1,Y X'Y Figure 3. Visual and orientation information

AIt = - E jII(x, y,t) - I(x,y,t- 1)1 (2) recorded during a single step (as shown in
N x, 2). The stride begins as the orientation value

AIX = 1i-N I(xy,t)-I(x-1,y,t)I ( goes negative.

8 = aAIt - 3AIX- Y1o (4)
derivative increases (due to motion), the spatial derivative

Typically, during the swing phase, the summed mag- decreases (due to blur), and the mean luminance tends to
nitude of the temporal derivative of the pixels in the im- fall (due to the camera looking towards the floor). Pitch
age increase dramatically, and the summed magnitude of information from the inertial sensor attached to the camera
the spatial derivative falls because blurring removes high- is also shown. We used this as an independent measure to
frequency edges. The spatial derivative is normalized for verify the visual gait analysis. Whether the foot is in full
the overall average luminance since this changes as the cam- swing, standing, or in an intermediate state is determined
era moves from pointing towards the floor to pointing to- by analyzing s. A transition between steps is assumed to
wards the ceiling (and lights). Since the wearer may move occur whenever this drops and rises again by at least 5% of
between different surfaces, the average component of AI, its maximum range. To demonstrate this, a longer walking
and I0 is removed using a running average, sequence is shown in Figure 4. Periods of stability detected

Plots of these measurements for the step in Figure 2 from the gait analysis are processed to achieve floor seg-
are shown in Figure 3. As the step begins, the temporal mentation and recognition.



Figure 5. Floor segmentation in action. The top row shows original images, the second row shows
masks corresponding to the floor, and the bottom row overlays the two.

01 to collect a significant sample of the appearance of the floor
S ,.and non-floor parts of the image. With recognition, we are

-oi able to reliably sample from the floor without the need for
1_-_o__ _____ _ any floor detection algorithms.

These images are well suited to wearable computing ap-
40 plications that benefit from detailed sensing of the wearer's
0 nearby environment (for example, detection of walking haz-
9 ards [3, 6]). Segmenting the floor in the image can serve as a
I ,first step to analyzing the free space, objects, and obstacles
o close to the wearer, out to about 6 feet with our wide angle

lens. We show example results from our floor segmentation
algorithm in Figure 5. If we assume flat floors, we can con-

S .. struct a function that for each pixel gives the distance from
0 r the toe to the corresponding point on the floor [21, which
- 10 2 40 s could be useful for object avoidance.

k m nuff~wThe top quarter and bottom quarter of the image are used
to initialize two probabilistic appearance models, one for

Figure 4. Visual and orientation information the floor and one for the non-floor parts of the image. These
recorded while walking down a corridor. The two appearance models and the resulting segmentation are
stride period is visible in all modalities, iteratively optimized using EM (expectation maximization)

to find a maximum likelihood segmentation of the floor and
non-floor. The segmentation is constrained to be a set of
radial distances emanating from the center of the bottom of

4 Floor segmentation the image.

Due to the canonical orientation of the stable images se- 5. Recognition
lected by our gait analysis, we know with high probability
that the bottom quarter of the image is floor and that the Areas with different functions often have distinct floor
top quarter of the image is not floor. The bottom quarter of surfaces (see Figure 6). For example, a wash room floor
these special images corresponds with the area from the toe is unlikely to be carpeted so that it can be easily mopped.
out to 3 inches on the floor. The top quarter of these images Floor recognition is therefore a valuable cue for localization
is very far above the horizon line. In this section and the and context awareness [1].
next, we exploit this property to perform segmentation and We have used camera placement to essentially solve the
recognition. With segmentation, this observation allows us problem of floor detection, as detailed in Sections 3 and 4. If



b

computing applications. Specifically, we have presented
methods and results for gait analysis, floor segmentation,
and floor recognition based solely on images from the cam-
era.

In general, as cameras and computation become less
costly we expect for more specialized camera sensing, such
as this, to become practical for wearable computing. Is-
sues of privacy and misuse could be mitigated by making
a closed sensory system. A camera on each foot would

Figure 6. Floors encountered. Four are car- make several applications easier by allowing for nearly un-
peted, four are not. The floors are drawn from interrupted acquisition of stable images. Several interesting
corridors, an office, lab space, a kitchen area future applications might be built on top of the results we
and a wash room. There is considerable vari- have presented including automated cartography, localiza-
ety in color and texture. tion, detection of nearby people by their feet and legs, and

recognizing common nearby objects such as chairs, tables,
walls and trash cans, extensions to outdoor terrain, and more

classification frequencies for floor samples powerful floor recognition systems.
floor 1 2 3 4 5 6 7 8
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